Monatshefte für Chemie Chemical Monthly © Springer-Verlag 2000

Printed in Austria

Palladium Chemistry Related to Benzyl Bromide Carbonylation: Mechanistic Studies

Anna M. Trzeciak and Józef J. Ziółkowski*

Faculty of Chemistry, University of Wrocław, PL-50383 Wrocław, Poland

Summary. Palladium(II) complexes of the general formula PdCl₂ (PR₃)₂ with PR₃ = P(OPh)₃, P(O-4-MeC₆H₄)₃, P(O-2-MeC₆H₄)₃, and PPh₂(OBu) were reduced by NEt₃ in chloroform or benzene to Pd(0) complexes Pd(PR₃)₄ and Pd(PR₃)_x(NEt₃)_{4-x}. The same reaction performed in the presence of air gave CH₃CHO or CH₃CH₂CHO when NPr₃ was used instead of NEt₃. Pd(P(OPh)₃)₄ reacted with benzyl bromide affording the oxidative addition product *cis*-PdBr(CH₂Ph)(P(OPh)₃)₂. The reaction of PdCl₂(P(OPh)₃)₂ with benzyl bromide was observed only in the presence of NEt₃, and a dimeric complex of [PdBr(CH₂Ph)(P(OPh)₃)]₂ was identified as the reaction product. Both benzyl complexes reacted fast with CO (1 atm) to form acyl complexes exhibiting ν (CO) bands at 1709 and 1650 cm⁻¹.

Keywords. Palladium complexes; Palladium reduction; Carbonylation; Benzyl bromide.

Introduction

The carbonylation of aryl halides catalyzed by palladium complexes is an important and convenient method for the synthesis of carboxylic acids and their derivatives [1-3]. The accepted mechanism of carbonylation is based on the reactivity of palladium(0) complexes which activate the substrate, aryl halide, in oxidative addition reactions. Consequently, the key forms of the catalyst participating in aryl halide carbonylation are: a Pd(0) complex, an aryl complex, the product of the oxidative addition of the substrate to the palladium(0) precursor, and an acyl complex formed by CO insertion into the Pd–C bond (Eq. (1)) [4–7].

$$\mathrm{Pd}^{(0)}L_n + \mathrm{Ph}X \longrightarrow \mathrm{Pd}^{(\mathrm{II})}(\mathrm{Ph})(X)L \xrightarrow{\mathrm{CO}} \mathrm{Pd}^{(\mathrm{II})}(\mathrm{Ph}\mathrm{CO})(X)L_n \tag{1}$$

The formation of these intermediates has been confirmed in many catalytic systems. However, triphenylphosphine palladium complexes are the most frequently ones to be used [6–8]. Pd(0) complexes in most of the known catalytic systems are formed *in situ* from a Pd(II) precursor and an appropriate reducing agent [5, 8, 9]. Alternatively, a separately synthesized stable Pd(0) complex, Pd(*dba*) (*dba* = dibenzylideneacetone), together with an excess of phosphine has been applied [10–13]. In the synthesis of Pd(0) complexes, different reducing agents have been applied, *e.g.* hydrazine [14], amines [15, 16], hydroxides [17], alkoxides [18], or F⁻ [19]. PdCl₂ has also been reduced by CO in the presence of water, even without any

^{*} Corresponding author

base added [20, 21]. In the absence of stabilizing ligands (*e.g.* phosphines), the black palladium metal is usually formed in few minutes. The excess of phosphine prevents the precipitation of palladium metal aggregates, and a soluble Pd(0) complex is formed instead [22].

The importance of the palladium reduction step in the carbonylation reaction has been pointed out and discussed by *Grushin* and *Alper* [18] who demonstrated the fundamental role of OH⁻ in the formation of Pd(0) complexes. According to their results, OH⁻ is the promotor of intramolecular palladium reduction by coordinated PPh₃ with the simultaneous formation of OPPh₃. The key steps of the palladium reduction mechanism starting from PdCl₂L₂ are as follows: a) substitution of Cl⁻ by OH⁻ in the coordination sphere of the palladium-phosphine complex, b) oxidation of phosphine, elimination of OPR₃, and palladium-hydrido complex formation, and c) reductive elimination of HCl with the formation of a coordinatively unsaturated Pd(0) complex ready for the oxidative addition of substrate (Eq. (2)).

$$PdCl_{2}(PR_{3})_{2} \xrightarrow{OH^{-}} PdCl(OH)(PR_{3})_{2} \xrightarrow{OPR_{3}} \left[Pd(H)(Cl)(PR_{3})\right] \xrightarrow{PR_{3}}_{HCl} \left[Pd(PR_{3})_{4}\right] (2)$$

That concept has also been used to explain the carbonylation reaction mechanism with a palladium complex modified with water-soluble sulfonated triphenylphosphine (*TPPTS*), and a PdCl(OH)(*TPPTS*)₂ complex has been postulated as an intermediate [9].

We have found that a $PdCl_2(PNS)_2$ complex ($PNS = Ph_2PCH_2CH_2C(O)NHC-(CH_3)_2CH_2SO_3Li$) is easily reduced to a Pd(0) complex in methanolic solution in the presence of NEt₃ (Eq. (3)) [23].

$$PdCl_2(PNS)_2 \xrightarrow[PNS, MeOH]{NEt_3} Pd(PNS)_4$$
(3)

However, because of the hygroscopic properties of *PNS* and the alkaline reaction medium we cannot definitely exclude the participation of OH^- in the process of the reduction of Pd(II) to Pd(0) according to the mechanism shown in Eq. (2).

The reactivity of the $PdCl_2(PNS)_2$ complex is quite different from that of $PdCl_2(PPh_3)_2$. As has been reported, a $PdCl_2(PPh_3)_2$ complex does not react with NEt₃ in the absence of water, but its reaction with CO in methanol in the presence of NEt₃ leads to the formation of the stable carbomethoxy Pd(II) complex PdCl(COOMe)(PPh_3)_2 (Eq. (4)) [16].

$$PdCl_{2}(PPh_{3})_{2} \xrightarrow{NEt_{3}} Pd(COOMe)(Cl)(PPh_{3})_{2}$$
(4)

These facts indicate that the ability of $PhCl_2(PR_3)_2$ complexes to undergo reduction in the presence of amines is strongly influenced by the kind of phosphorus ligand PR_3 .

Our studies of the reactivity of $PdCl_2(PR_3)_2$ complexes with different phosphorus ligands PR_3 allowed us to specify the group of compounds undergoing reduction to Pd(0) complexes in the presence of NEt₃ in aprotic solvents. We have found that NEt₃ reduces palladium in $PdCl_2(PR_3)_2$ complexes where $PR_3 =$ $P(OPh)_3$, $P(O-4-MeC_6H_4)_3$, $P(O-2-MeC_6H_4)_3$, and $PPh_2(OBu)$ in the absence of methanol, water, or CO. In this paper we confirm the pathway of $PdCl_2(P(OPh)_3)_2$ reduction to a $Pd(P(OPh)_3)_4$ complex with only NEt₃ as a reducing agent. The characteristics of benzyl complexes, $PdBr(CH_2Ph)(P(OPh)_3)_2$ and/or [PdBr-(CH₂Ph)(P(OPh)_3)_2]_2, formed in reactions of $Pd(P(OPh)_3)_4$ and $PdCl_2(P(OPh)_3)_2$ with benzyl bromide as well as their reactivity towards CO are also reported.

Results and Discussion

Reactions of $PdCl_2(PR_3)_2$ complexes with tertiary amines

 $PdCl_2(PR_3)_2$ complexes with $PR_3 = P(OPh)_3$, (1a), $P(O-4-MeC_6H_4)_3$, (1b), $P(O-2-MeC_6H_4)_3$ (1c), and $PPh_2(OBu)$ (1d) reacted with NEt₃ at room temperature in aprotic solvents, such as chloroform or benzene, forming Pd(0) complexes. The reactions were monitored by ³¹P{¹H} NMR spectroscopy in solutions containing PdCl₂(PR₃)₂ and different amounts of NEt₃ with NEt₃: Pd ratios of 1–20.

$$PdCl_{2}(P(OR)_{3})_{2} + n \text{ NEt}_{3} \rightarrow Pd(P(OR)_{3})_{4} + Pd(P(OR)_{3})_{x}(NEt_{3})_{4-x}$$
(5)

$$1 \qquad 2 \qquad 3$$

$$1a, 2a, 3a: R = Ph$$

$$1b, 2b, 3b: R = 4-MeC_{6}H_{4}$$

$$1c, 2c, 3c: R = 2-MeC_{6}H_{4}$$

In the reaction of **1a** with NEt₃ in CDCl₃, a new intensive ³¹P NMR signal was observed at 137.3 ppm which was assigned to $Pd(P(OPh)_3)_4$ (**2a**) by comparison with the spectrum of the original **2a** obtained by reduction of $PdCl_2(P(OPh)_3)_2$ with NaBH₄ in the presence of and excess of $P(OPh)_3$ (Eq. (6)).

Similarly, the main product of the reaction of **1c** with NEt₃ exhibited a singlet at 134.2 ppm in its ${}^{31}P{}^{1}H{}$ NMR spectrum, identical with that observed for Pd(P(O-2-MeC₆H₄)₃)₄ (**2c**) prepared according to Eq. (6). The second product of Eq. (5), **3c**, was characterized by a ${}^{31}P$ resonance at 75.4 ppm. **1b** reacted with NEt₃ in C₆D₆ in the NMR tube (Eq. (5)) forming two new products characterized by new ${}^{31}P{}^{1}H{}$ signals at 138.6 and 77.1 ppm (Table 1).

Table 1. ${}^{31}P{}^{1}H{}$ NMR data (δ in ppm) of PdCl₂(P(OR)₃)₂ (1), Pd(P(OR)₃)₄ (2), and Pd(P(OR)₃)_x(NEt₃)_{4-x} (3) complexes

	1	2	3
$R = Ph(\mathbf{a})$	83.7	137.3 137.8 ^b	75 ^c
$R = 4 - MeC_6H_4$ (b)	83.7	137.8 137.8	75.0
$R = 2 - MeC_6H_4$ (c)	80.0	130.0 134.2 134.3 ^b	75.4

 $\overline{}^{a}$ In C₆D₆; ^b Eq. (6); ^c Eqs. (7) and (8)

The signals observed at *ca*. 75 ppm were assigned to Pd(0) complexes of the type Pd(P(OR)₃)_x(NEt₃)_{4-x} (**3**) on the basic of an additional experiment of ligand exchange between **2a** and PdCl₂(NEt₃)₂ (**4**), in which the signal at 75 ppm appeared together with a second one at 83.7 ppm, attributable to **1a** (Eq. (7)). The mixed complexes of the type **3** were observed only in solution and were not isolated in analytically pure form, which is reflected by the tentative formula.

$$Pd(P(OPh)_{3})_{4} + PdCl_{2}(NEt_{3})_{2} \longrightarrow Pd(P(OPh)_{3})_{x}(NEt_{3})_{4-x} + PdCl_{2}(P(OPh)_{3})_{2}$$
(7)
2a 3a 1a

Unexpectedly, $Pd(P(OPh)_3)_x(NEt_3)_{4-x}$ (3a) was also identified in a solution containing 1a and 4 (Eq. (8)).

$$PdCl_{2}(P(OPh)_{3})_{2} + PdCl_{2}(NEt_{3})_{2} \longrightarrow$$

$$1a \qquad 4$$

$$Pd(P(OPh)_{3})_{x}(NEt_{3})_{4-x} + PdCl_{2}(P(OPh)_{3})(NEt_{3})$$

$$3a \qquad 5$$

$$(8)$$

This reaction is an example of palladium reduction in the absence of free amine, but with the participation of an amine coordinated in complex **4**. The mixed complex $PdCl_2(P(OPh)_3)(NEt_3)$ (**5**), the second product of Eq. (8), was characterized by a signal at 69.8 ppm in the ³¹P{¹H} NMR. An analogous mixed complex, $PdCl_2(P(OPh)_3)(PhCN)$ (**6**), was found in a solution containing **1a** and $PdCl_2(PhCN)_2$ as the only product of that reaction in which palladium reduction was not observed. This fact is in agreement with the observation that NEt₃ easily substitutes of PhCN in the $PdCl_2(PhCN)_2$ complex forming the complex **4**. The coordination of NEt₃ after its addition to the solution of $PdCl_2(PhCN)_2$ was clearly monitored in its ¹H NMR spectrum, in which-besides the signals of the free amine-new downfield-shifted resonances appeared at 1.35 (CH₃) and 2.8 (CH₂) ppm. The same signals were also observed in the spectrum of the isolated complex **4**. The analogous $PdCl_2(HNEt_2)_2$ complex, very poorly soluble, was obtained by treating $PdCl_2(PhCN)_2$ with an excess of HNEt₂. The reactions of palladium-triphenyl-phosphito complexes are summarized in Scheme 1.

The only new product, $Pd(PPh_2(OBu))_4$, showing a ${}^{31}P{}^{1}H$ NMr signal at 122 ppm, was found in the reaction of $PdCl_2(PPh_2(OBu))_2$ (1d) with NEt₃. ${}^{31}P{}^{1}H$ NMR spectra of solutions containing the complex 1a and NEt₃ allowed us to find evidence of NEt₃ coordination to palladium(II) before its reduction. The new palladium(II) complexes were identified by two pairs of doublets of quite different chemical shifts (95 and 48 ppm), typical for two slightly different complexes each containing two nonequivalent P(OPh)₃ ligands in *cis* position. Two doublets of the first product, formulated as PdCl₂(P(OPh)₃)₂(NEt₃) (7), are observed at 96.8 and 47.7 ppm with ${}^{2}J(P-P) = 76$ Hz. The second product, [PdCl(P(OPh)₃)₂(NEt₃)]Cl (7a), exhibited two doublets at 89.9 and 49.5 ppm with ${}^{2}J(P-P) = 107$ Hz. The same products were formed when 4 reacted with P(OPh)₃. As long as a solution contained an excess of amine, the spectra were badly resolved, probably because of dynamic effects and ligand exchange. Much better spectra were obtained when the sample was evaporated to dryness and dissolved in CDCl₃.

The analysis of the IR and ¹H NMR spectra of all reaction mixtures in which Pd(0) complexes were formed allowed us to find the ammonium salt by-product, NEt₃HCl, identical to that obtained in the reaction of NEt₃ with HCl. The formation of NEt₃HCl was confirmed in all experiments in which Pd(II) was reduced to Pd(0) and explains the manner in which Cl⁻ ligands are removed from the coordination sphere in the first step of the reduction. It seems worth noting that NEt₃HCl was also found in the product of the reaction of **1a** with **4** in which a Pd(0) complex was formed without free amine added (Eq. (8)).

The Cl⁻ abstraction from the palladium coordination sphere, rather fast in triphenylphosphito complexes $PdCl_2(P(OR)_3)_2$, was not observed under the same conditions for a similar $PdCl_2(PPh_3)_2$ complex or for $(PdCl_2(PhCN)_2)$. Pure $PdCl_2(NEt_3)_2$ (4) and $PdCl_2(NHEt_2)_2$ (4a) complexes were obtained by substitution of PhCN in $PdCl_2(PhCN)_2$ with an excess of NEt_3 or $NHEt_2$.

The GC-MS analysis of a xylene solution containing **1a** and an excess of NEt₃ left in contact with air for 3 h showed the presence of acetaldehyde. The same result was obtained for the reaction of **1b** with NEt₃. When N*Pr*₃ was used instead of NEt₃, the reaction mixture contained propanal. In all of the above cases, the formation of aldehydes can be explained by air-oxidation of olefin evolved during amine decomposition. A control experiment in which the $PdCl_2(PPh_3)_2$ complex was allowed to react with NEt₃ or NPr₃ under the same conditions revealed no organic product, as expected, because $PdCl_2(PPh_3)_2$ was not reduced by tertiary amines [16].

The most probable mechanism of palladium reduction is based on the decomposition of the coordinated amine with the splitting of the N–C bond and the formation of a hydrido-olefin-palladium complex (Scheme 2). The elimination of HCl from the coordination sphere of palladium causes its reduction to Pd(0), and subsequently HCl reacts with NEt₃ forming the salt NEt₃HCl identified in the post-reaction mixture.

. _ _ //

Palladium-triphenylphosphito complexes as catalyst precursors in carbonylation reactions

The complex **2a** reacts with benzyl bromide, forming the oxidative addition product cis-PdBr(CH₂Ph)(P(OPh)₃)₂ (**8**) in few minutes (Eq. (9)).

$$Pd(P(OPh)_3)_4 + PhCH_2Br \rightarrow cis-PdBr(CH_2Ph)(P(OPh)_3)_2 + 2 P(OPh)_3$$
(9)
2a 8

The reaction was first performed in the NMR tube, and in the ³¹P{¹H} NMR spectrum the appearance of two doublets at 105.0 and 113.5 ppm with ²*J*(P-P) = 139 Hz was registered immediately after PhCH₂Br addition. The same spectrum was observed for the dissolved isolated product and confirmed the *cis*-position of both P(OPh)₃ ligands in **8**. An additional proof of the *cis*-structure was provided by the presence of two doublets of the CH₂ signal at 4.5 ppm (¹H NMR), split by two nonequivalent phosphorus atoms. It is worth noting that in most examples known from literature *trans* or dimeric structures have been reported for products of aryl halide oxidative addition to Pd(0) [6, 24–29].

The benzyl complex **8** reacts with CO (1 atm) producing the acyl complex PdBr(C(O)CH₂Ph)(P(OPh)₃)₂ (**9**) with a characteristic ν (CO) band at 1709 cm⁻¹ (Eq. (10)). A terminal CO was not observed, suggesting a rather quick insertion of CO into the Pd–C bond. The acyl complex exhibits one ³¹P NMR signal of two equivalent P(OPh)₃ ligands at 102.6 ppm, thus corroborating its *trans* geometry.

$$cis-PdBr(CH_2Ph)(P(OPh)_3)_2 + CO \rightarrow [PdBr(CH_2Ph)(P(OPh)_3)_2(CO)]]^{\#} \rightarrow \mathbf{8}$$

$$trans-PdBr(C(O)CH_2Ph)(P(OPh)_3)_2 \qquad (10)$$
9

On the basis of the above results showing the formation of Pd(0) complexes in the reaction of **1** with NEt₃ it was expected that the benzyl complex could also be prepared by a reaction of **1a** with PhCH₂Br in the presence of NEt₃. The analysis of the ¹H and ³¹P{¹H} NMR spectra of a CDCl₃ solution containing **1a** and benzyl bromide clearly showed no reaction. However, immediately after NEt₃ was added to the reaction mixture, a new broad multiplet appeared at 102 ppm in the ³¹P{¹H}

Fig. 1. ³¹P{¹H} NMR spectra of [PdBr(CH₂Ph)(P(OPh)₃)]₂ (10) in CDCl₃ at different temperatures

NMR spectrum. Cooling of the solution to -20° C made it possible to measure two separate signals of *cis*- and *trans*-isomers (Fig. 1). A similar interconversion of isomers involving the cleavage of bridges was also observed in other complexes. The isolated complex had the same spectroscopic characteristics, and its ¹H NMR spectrum showed a CH₂ signal at 4.48 ppm confirming the coordination of the PhCH₂ ligand to palladium (Eq. (11)).

$$PdCl_{2}(P(OPh)_{3})_{2} + PhCH_{2}Br \xrightarrow{\text{NEt}_{3}} 1/2 [PdBr(CH_{2}Ph)(P(OPh)_{3})]_{2} \quad (11)$$

$$1a \qquad 10$$

The dimeric complex $[PdBr(CH_2Ph)(P(OPh)_3)]_2$ (10) reacts with CO (1 atm), producing, in few seconds the acyl complex 11 with a characteristic $\nu(CO)$ band at 1650 cm⁻¹ (r. 12).

$$[PdBr(CH_2Ph)(P(OPh)_3)]_2 + CO \rightarrow [PdBr(C(O)CH_2Ph)(P(OPh)_3)]_2 \quad (12)$$
10 11

Conclusions

The reduction of Pd(II) to Pd(0) in the presence of secondary amines is well documented in the literature [16] and was used for the preparation of Pd(0) complexes with PPh₃ [16] and P(OEt)₃ [30]. To our knowledge, there are no reported examples of the successful application of a tertiary amine in a similar synthesis. We have shown that tertiary amines, like NEt₃ or NPr₃, react with PdCl₂ (PR₃)₂ complexes (PR₃ = P(OPh)₃, P(O-4-MeC₆H₄)₃, P(O-2-MeC₆H₄)₃, PPh₂(OBu)) forming Pd(0) complexes. The reaction of PdCl₂(PR₃)₂ complexes with NEt₃ facilitates the activation of PhCH₂Br by forming a benzyl complex, which is a very important step in the carbonylation reaction.

Experimental

All operations were performed under N₂ using the *Schlenk* technique. Solvents were purified according to standard methods [31]. $PdCl_2(cod)$ [32] and $PdCl_2(PhCN)_2$ [33] were obtained according to literature methods. Elemental analyses agreed favourably with the calculated values (C, H). NMR spectra were recorded with a Bruker ARX 300 NMR spectrometer and chemical shifts are given relative to internal *TMS* (¹H) and relative to external 85% H₃PO₄ (³¹P). IR spectra were measured with a FT-IR Nicolet Impact 400 instrument, UV/Vis spectra with an HP 4852 Diode Array spectrophotometer. GC-MS analyses were carried out with HP 5890 II setup linked to an HP 5971 A mass detector.

Dichloro-bis-(triphenylphosphite) palladium(II) (1a; C₃₆H₃₀O₆P₂Cl₂Pd)

To a stirred suspension of 0.1 g PdCl₂(*cod*) in 2 cm³ benzene, 0.25 g P(OPh)₃ were added slowly. In a few minutes the colour of the mixture changed from yellow to very pale yellow, and a white precipitate was formed. The stirring was continued for 5 min, and the precipitate was filtered off, washed with ethyl ether, and dried *in vacuo*.

Yield: 86%; ³¹P{¹H} NMR (CDCl₃, δ , 121.5 MHz): 83.7 ppm; ¹H NMR (CDCl₃, δ , 300 MHz): 7.07 (m, Ph), 7.19 (m, Ph) ppm; IR (KBr): $\nu = 1585$ s, 1492 vs, 1184 vs, 1158 vs, 1027 m, 944 vs, 767 s, 690 s, 596 m cm⁻¹; UV/Vis (CH₂Cl₂): $\lambda = 320$ nm.

Dichloro-bis-(p-totylphosphite) palladium(II) (1b; C₄₂H₄₂O₆P₂Cl₂Pd)

The complex was obtained according to the procedure given for 1a in ethyl ether instead of benzene.

Yield: 85%; ³¹P{¹H} NMR (C₆D₆, δ , 121.5 MHz): 86.6 ppm; ¹H NMR (C₆D₆, δ , 300 MHz): 2.1 (s, CH₃), 6.85 (d, Ph), 7.45 (d, Ph) ppm; IR (KBr): $\nu = 1508$ vs, 1191 vs, 1164 s, 947 vs, 934 vs, 814 m cm⁻¹; UV/Vis (CH₂Cl₂): $\lambda = 268$, 316 nm.

Dichloro-bis-(o-totylphosphite) palladium(II) (1c; C₄₂H₄₂O₆P₂Cl₂Pd)

The complex was obtained according to the procedure given for **1b**; however, because of slower reaction stirring of the mixture was continued for 30 min.

Yield: 60%; ³¹P{¹H} NMR (CDCl₃, δ , 121.5 MHz): 81.1 ppm; ¹H NMR (CDCl₃, δ , 300 MHz): 2.03 (s, CH₃), 7.04 (m, Ph), 7.19 (m, Ph) ppm; IR (KBr): $\nu = 1590$ s, 1488 vs, 1465 m, 1225 vs, 1171 vs, 1111 vs, 1051 m, 951 vs, 924 vs, 807 s, 764 s, 607 m cm⁻¹; UV/Vis (CH₂Cl₂): $\lambda = 266$ sh, 324 nm.

Dichloro-bis-(butyldiphenylphosphinite) palladium(II) (1d; C₃₂H₃₈O₂P₂Cl₂Pd)

To a stirred suspension of $0.11 \text{ g PdCl}_2(cod)$ in $2 \text{ cm}^3 \text{ CH}_2\text{Cl}_2$, 0.3 cm^3 of $\text{PPh}_2(\text{OBu})$ were added forming a colorless solution which was evaporated after 10 min. The residue was washed with ethyl ether to give 88% of a white product.

1288

³¹P{¹H} NMR (CDCl₃, *δ*, 121.5 MHz): 108.9 ppm; ¹H NMR (CDCl₃, *δ*, 300 MHz): 0.74 (t, *J*(H-H) = 7 Hz, CH₃), 1.09 (ps-qui, CH₂–CH₃), 1.23 (ps-qui, CH₂–CH₂–CH₃), 3.63 (m, O–CH₂), 7.4 (m, Ph), 7.5 (m, Ph), 7.8 (m, Ph) ppm; IR (KBr): $\nu = 2970$ m, 1439 s, 1108 s, 974 s, 975 s, 757 m, 694 m cm⁻¹; UV/Vis (CH₂Cl₂): $\lambda = 266$, 328 nm.

Tetra-(triphenylphosphite) palladium(0) (2a; C₇₂H₆₀O₁₂P₄Pd)

A suspension of 0.075 g of PdCl₂(*cod*) and 0.4 cm³ of P(OPh)₃ was stirred in 2 cm³ of benzene until a white precipitate of **1a** was formed (*ca*. 5 min). Then, 0.015 g of NaBH₄ dissolved in 1 cm³ of EtOH were added drop by drop during 5 min. The mixture was stirred for 1 h, concentrated *in vacuo*, and the white precipitate was filtrated off and dried *in vacuo*.

Yield: 70%; decomposes to dark non-identified products on air; ³¹P{¹H} NMR (CDCl₃, δ , 121.5 MHz): 137.3 ppm; IR (KBr): $\nu = 1592$ s, 1495 vs, 1208 vs, 1188 vs, 1027 m, 914 vs, 874 vs, 767 s, 730 m, 694 s, 600 m cm⁻¹.

Benzylbromo-bis-(triphenylphosphite) palladium(II) (8; C43H37O6P2BrPd)

A solution containing 0.055 g of Pd(P(OPh)₃)₄ and 0.08 cm^3 of PhCH₂Br in 2 cm^3 of benzene was stirred for 1 h during which time the colourless solution became yellow. The solvent was removed under reduced pressure, and the yellow residue was washed with EtOH and dried.

Yield: 75%; ³¹P{¹H} NMR (CDCl₃, δ , 121.5 MHz): 105.0, 113.5 (d,d; ²*J*(P-P) = 139 Hz) ppm; ¹H NMR (CDCl₃, δ , 300 MHz): 4.50, 4.67 (d,d, ³*J*(H-P) = 14.8 Hz, CH₂) ppm; IR (KBr): $\nu = 1592$ s, 1488 vs, 1181 vs, 1161 vs, 1030 m, 920 vs, 773 m, 695 m cm⁻¹; UV/Vis (CH₂Cl₂): $\lambda = 290$, 356 nm.

Bromophenylacetyl-bis-(triphenylphosphite) palladium(II) (9; C₄₄H₃₇O₇P₂BrPd)

A solution of $0.03 \text{ g PdBr}(CH_2Ph)(P(OPh)_3)_2$ in 1 cm^3 of $CHCl_3$ was stirred in a CO atmosphere (1 atm) for 30 min. The solvent was removed, and the yellow residue was washed with ethanol and dried.

³¹P{¹H} NMR (C₆D₆, δ, 121.5 MHz): 102.6 ppm; ¹H NMR (C₆D₆, δ, 300 MHz): 4.15 (s, CH₂) ppm; IR (KBr): $\nu = 1709$ m, 1592 s, 1495 vs, 1188 vs, 1164 s, 917 vs, 767 m, 693 m cm⁻¹; UV/Vis (CH₂Cl₂): $\lambda = 288$, 366 nm.

Bis-(bromobenzyltriphenylphosphite palladium(II)) (**10**; C₅₀H₄₄O₆P₂Br₂Pd₂)

To a suspension of 0.06 g of $PdCl_2(P(OPh)_3)_2$ in 2 cm^3 of benzene, 0.01 cm^3 of NEt₃ and 0.01 cm^3 of PhCH₂Br were added, and the mixture was stirred until a yellow solution was formed. The yellow product precipitated after addition of EtOH.

Yield: 85%; ³¹P{¹H} NMR (CDCl₃, δ , 121.5 MHz): 102.0 ppm; ¹H NMR (CDCl₃, δ , 300 MHz): 4.48 (CH₂) ppm; IR (KBr): $\nu = 1589$ s, 1488 vs, 1181 vs, 1158 s, 941 vs, 777 m, 761 m, 693 m cm⁻¹; UV/Vis (CH₂Cl₂): $\delta = 258$, 328 nm.

Bis-(bromophenylacetyltriphenylphosphite palladium(II)) (11; C₂₆H₂₂O₄PBrPd)

A solution of $0.25 \text{ g} [PdBr(CH_2Ph)(P(OPh)_3)]_2$ in 1 cm^3 CHCl₃ was stirred in a CO atmosphere (1 atm) for 30 min. The solvent was removed and the yellow residue was washed with ethanol and dried.

³¹P{¹H} NMR (C₆D₆, δ , 121.5 MHz): 102.6 ppm; ¹H NMR (C₆D₆, δ , 300 MHz): 0.74 (t, *J*(H-H) = 7 Hz, CH₃), 1.09 (ps-qui, CH₂-CH₃), 1.23 (ps-q, CH₂-CH₂), 3.63 (m, O-CH₂), 7.4 (m,

Ph), 7.5 (m, Ph), 7.8 (m, Ph) ppm; IR (Kbr): $\nu = 1650$ m, 1580 m, 1470 s, 1182 s, 942 vs, 750 m, 672 m cm⁻¹.

Dichloro-bis-(diethylamine) palladium(II) (4a; C₈H₂₂N₂Cl₂Pd)

To a stirred suspension of 0.03 g PdCl₂(PhCN)₂ in 2 cm³ CHCl₃, 0.1 cm³ NHEt₂ were added. After 5 min a yellow precipitate was formed which was filtered and dried *in vacuo*.

Yield: 90%; IR (KBr): $\nu = 3200$ s, 2960 s, 1480 s, 1360 m, 1050 m, 800 m cm⁻¹.

Dichloro-bis-(triethylamine) palladium(II) (4; C₁₂H₃₀N₂Cl₂Pd)

To a stirred suspension of $0.03 \text{ g PdCl}_2(\text{PhCN})_2$ in $2 \text{ cm}^3 \text{ CHCl}_3$, $0.1 \text{ cm}^3 \text{ NEt}_3$ were added. After 10 min a dark red solution was formed which was evaporated to dryness. The residue was washed with hexane giving an orange product.

Yield: 50%; IR (KBr): $\nu = 2950$ s, 1470 s, 1380 s, 1000 m, 750 m, 800 m cm⁻¹; ¹H NMR (CDCl₃, δ , 300 MHz): 1.35 (t, CH₃), 2.8 (q, CH₂) ppm.

Acknowledgements

This work was supported by KBN (State Committee for Research) project 3T09A 061 15. The authors want to thank Ms. *Katarzyna Niesyty* and Mr. *Paweł Myjak* for technical assistance.

References

- Cornils B, Herrmann WA (eds) (1996) Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook in Two Volumes. VCH Weinheim, New York
- [2] Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) J Mol Catal A: Chemical 104: 17
- [3] Tkatchenko I (1982) In: Stone AGF, Abel WE (eds) Comprehensive Organometallic Chemistry, vol 8. Pergamon Press, Oxford, UK
- [4] Moser WR, Wang AW, Kildahl NK (1988) J Am Chem Soc 110: 2816
- [5] Monteil F, Kalck P (1994) J Organomet Chem 482: 45
- [6] Garrou PE, Heck RF (1976) J Am Chem Soc 98: 4115
- [7] Milstein D (1988) Acc Chem Res 21: 428
- [8] Grushin VV, Alper H (1993) Organometallics 12: 1890
- [9] Kohlpaintner CW, Beller M (1997) J Mol Catal A: Chemical 116: 259
- [10] Amatore C, Jutand A (1998) Coord Chem Rev 178-180: 511
- [11] Bei X, Turner HW, Weinberg WH, Guram AS, Petersen JL (1999) J Org Chem 64: 6797
- [12] Widenhoefer RA, Zhong HA, Buchwald SL (1996) Organometallics 15: 2745
- [13] Kayaki Y, Noguchi Y, Iwasa S, Ikariya T, Noyori R (1999) J Chem Commun 1235
- [14] Coulson DR (1972) Inorganic Synthesis 13: 121
- [15] Meier M, Basolo F, Pearson RG (1969) Inorganic Synthesis 8: 795
- [16] Hidai M, Kokura M, Uchida Y (1973) J Organometal Chem 52: 431
- [17] Ioele M, Ortaggi G, Scarsella M, Sleiter G (1991) Polyhedron 10: 2475
- [18] Roffia P, Gregorio G, Conti F, Preglalia GF (1977) J Mol Catal 2: 191
- [19] McLaughlin PA, Verkade JG (1998) Organometallics 17: 5937
- [20] Cavinato G, Pasualetto M, Ronchin L, Toniolo L (1997) J Mol Catal A: Chemical 125: 15
- [21] Cavinato G, Toniolo L (1999) J Mol Catal A: Chemical 143: 325
- [22] Bertoux F, Monflier E, Castanet Y, Mortreux A (1999) J Mol Catal A: Chemical 143: 23
- [23] Trzeciak AM, Ziółkowski JJ (2000) J Mol Catal A: Chemical 154: 93
- [24] Otsuka S, Nakamura A, Yoshida T, Naruto M, Ataka K (1973) J Am Chem Soc 95: 3180

Palladium Catalyzed Benzyl Bromide Carbonylation

- [25] Gretz E, Sen A (1986) J Am Chem Soc 108: 6038
- [26] Lin Yong-Shou, Yamamoto A (1998) Organometallics 17: 3466
- [27] Anderson GK (1983) Organometallics 2: 665
- [28] Kubota M, Boegeman SC, Keil RN, Webb CG (1989) Organometallics 8: 1616
- [29] Paul F, Patt J, Hartwig JF (1995) Organometallics 14: 3030
- [30] Meier M, Basolo F, Pearson RG (1969) Inorg Chem 8: 795
- [31] Perrin DD, Armarego WLF (1988) Purification of Laboratory Chemicals. Pergamon Press
- [32] Drew D, Doyle JR (1990) Inorg Synthesis 28: 348
- [33] Anderson GA, Liu M (1990) Inorg Synthesis 28: 61

Received June 5, 2000. Accepted July 25, 2000